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SUMMARY 
A three-dimensional control volume finite element method is developed for NAPL groundwater contamina- 
tion problems. Tetrahedral elements are formed by decomposing deformed blocks. The decomposition is 
carried out in such a way as to minimize the size of the negative transmissibilities. Negative transmissibilities 
produce non-physical discrete fluid flow paths and can cause oscillatory behaviour in the Newton iteration. 
Example results are presented for a three-dimensional NAPL contamination scenario using typical geo- 
physical data. 
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1. INTRODUCTION 

Groundwater contamination by non-aqueous phase hazardous substances is a problem of 
growing concern.1-9 Compounds such as creosote, TCE and gasoline are examples of toxic 
substances which form a non-aqueous phase. These substances are commonly referred to as 
NAPL (non-aqueous phase liquid) contaminants. Decommissioned petrochemical plants and 
abandoned town gas production facilities are examples of sources of NAPL contaminants. 

Simulation of NAPL contaminant flow requires the solution of three-phase flow in a porous 
m e d i ~ m . ~ * ' ~ ~ ~ '  In groundwater applications it is common to invoke the passive air phase 
appr~ximation.~, l2 This approach results in numerical solution of a three-phase problem having 
computational requirements similar to a two-phase simulation. 

Various techniques have been devised for modelling NAPL contamination. These methods 
include two-dimensional finite difference'. -6 and finite element methods.'. Three-dimensional 
finite difference methods have also been de~ i sed .~  

Since adjacent geological layers can have an order-of-magnitude difference in physical proper- 
ties, it is convenient to place grid nodes in locations which correspond to these layers. In practice, 
these layers are rarely planes. Consequently, the resulting grid is irregular. 

The basic discretization method which will be used in the following is essentially a finite volume 
approach with finite-element-type basis functions. This has variously been described as a control 
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volume-finite element method,13.14 the box method' or the influence coefficient technique.I6 
This method combines the flexibility of a finite element method with the local conservation 
property and easy identification of upstream points characteristic of finite difference methods." 
Owing to the non-linear hyperbolic nature of the equations (in the limit of zero capillary 
pressure), upstream weighting is required to ensure-convergence to the physically correct solution 
which satisfies the entropy condition.'' 

In a previous paper,18 two-dimensional problems were solved using a triangular grid with first 
degree C o  (linear) basis functions. Typically, geophysical problems have the horizontal dimension 
much larger than the vertical dimension. In this case, first-degree C o  Lagrange basis functions 
defined on quadrilaterals are inappropriate, since a large number of 'negative transmissibilities' 
are obtained in the discretization process. This is physically undesirable, since negative trans- 
missibilities result in a discrete fluid flow which is in the opposite direction to the physical fluid 
flow. 

Violation of the positive transmissibility condition for unsaturated flow problems may not be 
too serious. However, in the case of multiphase flow, with mobile fluids of differing densities, 
negative transmissibilities produce demonstrably poor results. As an example, consider the 
following situation: suppose that node A is physically located above node B (depth increasing as 
we move from A to B). At the initial instant in time let both nodes A and B contain mobile 
saturations of a dense fluid and a light fluid. Owing to buoyancy forces, the dense fluid should 
move from A to B while the light fluid should move from B to A. The discretized system will 
demonstrate this behaviour if the transmissibility between A and B is positive. However, if the 
transmissibility between A and B is negative, then the discrete solution will show that the dense 
fluid 'floats' on top of the light fluid. This pathological behaviour has been demonstrated 
computationally in Reference 18. 

Of course, it can be argued that such observable non-physical behaviour is extremely rare. 
However, even in cases where the discrete solution does not demonstrate non-physical behaviour, 
negative transmissibilities may cause poor convergence behaviour of the Newton iteration. Some 
examples of this effect will be given in this paper. 

In the case of a constant permeability tensor a given set of nodes in two dimensions can be 
triangulated so that all interior edges have positive transmissibilities. This is possible in two 
dimensions because of the equivalence of the positive transmissibility condition and a Delauney 
triangulation." Briefly, a Delauney triangulation satisfies the empty circle criterion: the circum- 
circle of any triangle in a Delauney triangulation contains no other nodes in its interior.19 
More generally, for a non-constant permeability tensor computational experiments indicate 
that a generalized Delauney edge swap algorithm produces only a small number of negative 
transmissibilities.18 

The objective of this work is to consider full three-dimensional discretizations. The natural 
extension of triangular basis functions to three dimensions results in the use of tetrahedral 
elements. 

Unfortunately, a three-dimensional Delauney triangulation does not, in general, produce 
positive transmissibilities.20 Moreover, it can be shown that positive transmissibilities cannot be 
obtained, in general, by transformations of tetrahedral faces.20 Consequently, it is not possible to 
obtain positive transmissibilities in three dimensions without node movement. 

Of course, it is still possible to seek a triangulation which minimizes the number and size of the 
negative transmissibilities. In this paper we will demonstrate the use of a straightforward heuristic 
technique for constructing a grid composed of tetrahedra, which is suitable for geophysical 
applications. This method produces negative transmissibilities which are small in size. The 
importance of having small negative transmissibilities is demonstrated by solving a model 
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problem with two grids. These grids have identical node locations but use different triangulations. 
One of the triangulations has large negative transmissibilities, which results in extremely poor 
computational performance. 

Some example results for a realistic NAPL contamination problem are also given and we 
discuss the numerical problems associated with NAPL simulation. 

2. MODEL EQUATIONS 

The three phases which appear in NAPL contamination models are water (w), air (a) and 
NAPL (n). If the passive air phase approximation is used, then the following equations hold 

water conservation, 

(1) 
a 

( 4 P w S w ) = P w q L  +v  * C K P w ~ w ( V P w  -pwgVD)I, 

NAPL conservation, 

where S I  is the saturation of phase I ,  4 is the porosity, AI = Krz/pl, KrZ is the relative permeability of 
phase I, pz is the viscosity of phase I, K is the absolute permeability tensor, D is the depth, g is the 
gravitational acceleration, PI is the pressure of phase I, pI is the density of phase I and q; is the 
source/sink term for phase I. In addition, we have the following constraints: 

sn + s, + sw = 1, 

p a = p n  + apcan(sa )  + (1 -a)  CPcaw(Sa)-Pcnw(Sw = 1)1, 

pn=f'w + af'cnw(sw) +(I  - a ) P c n w ( S w =  11, 

(3) 

(4) 

(5 )  

where 
a=min(l, Sn/S,*) 

and PCan, Pcnw and P,,, are experimentally determined capillary pressure curves, as are the 
relative permeability curves Krl.'OP l1 Equations (3x6) ensure that the capillary pressures have 
the correct limits as Sn+O. S,* is a blending parameter.18 Assuming that the air pressure Pa is 
constant, then equations (1x5) represent a system of five equations in the five unknowns 

Pn,  p w ,  Sn ,  S w ,  Sa.  (7) 
The constraint equations (3x5) can be used to eliminate three unknowns, so that two primary 
unknowns remain. In the following the primary unknowns are selected to be (Sn, Pn). 

3. DISCRETIZATION 

We illustrate the discretization method for equation (2). In the following, superscripts N ,  N +  1 
and M represent time levels. A quantity with superscript M may be a function of several variables, 
some of which are evaluated at time level N + 1 and some of which are evaluated at time level M .  
For example, 

n:=n,(P:", Sft"). (8) 

This will be explained in detail below. 
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Let Ni be the usual Lagrange polynomial Co basis functions, where 

1 at node i, i 0 at all other nodes, 
Ni = 

C Nj= 1 
i 

everywhere in the solution region. 

Let 

(9) 

If a lumped mass approach is used for the time derivative and a Galerkin approximation is used 
for the divergence term, then equation (2) becomes (using equation (10)) 

where the integrals are over the solution domain u and At is the time step size. 
Using equation (9), we can write 

Consequently 

If 

q . = p  .q’.V. ni nr nr I Y  

then equations (11x14) give 

The control volumefinite element method approximates the integral in equation (15) by 

where 

and (AfPpr)cps is evaluated at the upstream point {i,j}. (This will be discussed below.) The 
approximation involved in equation (16) is first-order-correct in regions where (I2rpf;’)  is 
non-constant. This is unavoidable if we use upstream weighting for A;, which is required to 
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ensure convergence to the correct solution" for non-linear I n .  Of course, if Sn is constant over the 
support of N i ,  then no approximation is involved in equation (16). 

Finally, combining equations (15) and (16) gives 

(18) 
v;. t C(dpnSn)r+'-(d~nSn)rI=q,NI+'+ 1 7 i j ( C P : ) i p ( $ s - $ Z ) ,  

j = m  

where qi is the set of neighbour nodes of node i such that y i j  is non-zero. 

the discrete equations for both water and NAPL are as follows: 

water equation, 

A similar procedure can be used to discretize the water conservation equation. More precisely, 

(19) t v;. C ( d p w ~ w ) Y ' '  - ( d ~ w S w ) ? I  =&+'+ 1 y i j ( I w  M p w  M ) i j  UPS ( $ t j - $ $ > ,  

i a s .  

where 

$4 =Ei+ - ( P i n , ,  i I M  - P: i j+  112 gDi, 

PSnW = Pn - P, (see equation (5)) ,  

NAPL equation, 

where 

and where 

Allowing M to be either M = N or M = N + 1 and letting M vary from node to node (M = M(i ) )  
defines an adaptive implicit method2'* 22 which will be used in the following. Further details 
concerning the above method can be found in References 21 and 22. 

The discrete equations (19) and (21) are solved using full Newton iteration and the Jacobian is 
solved using an incomplete LU (ILU) factorization with Orthomin accelerati~n.~~ 

4. THE POSITIVE TRANSMISSIBILITY CONDITION 

In order to demonstrate the basic idea of positive transmissibilities, consider the simple case of the 
diffusion equation 

ct = V * KVc (24) 

where c is the concentration of some chemical and K is the diffusion tensor. Consider the situation 
shown in Figure 1. Suppose that at the initial instant in time the concentration profile of c is such 
that 

ac ac 
-=constant c 0, -=O. 
ax aY 
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Flux Surface 

Figure 1. Domain for diffusion equation example 

For simplicity we assume that the boundary conditions are zero flux and that the boundaries are 
far away from the flux surface shown in Figure 1. Consider a flux surface normal to the 
x-direction. Then (assuming equation (25)) 

and the concentration flux is given by 

f= -K.Vc,  

so that the flux normal to the surface in Figure 1 is 

- VC.K.VC 
f . f i =  > 0, 

IVCI 

since K must be positive definite. Consequently, the diffusive flux is out of region A and into 
region B. 

More concretely, consider two points on either side of the flux surface, i andj  (Figure 1). In the 
above situation it is not possible for the chemical to diffuse from B to A since it would have to 
cross the surface and the flux at the surface points from A to B. Let 

c = C ciNi, 

where ci are the nodal values of the discrete concentration and Ni are the basis functions as 
defined in equation (9). 

Then, a lumped mass, Galerkin approximation to equation (24) is 

(cr+;;cr) &= c yi j (cy-cy) ,  

j E $ i  

where y r j  is given by equation (17), Vi is defined in equation (14), qi is the set of neighbour nodes of 
node i, and M = N if an explicit approximation is used, and M = N + 1 if an implicit approxima- 
tion is used. 



CONTROL VOLUME FINITE ELEMENT 961 

Suppose an explicit method is used to solve equation (26) (M = N).  Given the initial state as 
defined by equation (25), choose a At sufficiently small so that equation (26) is stable. From 
equation (25) 

c r  > cy ,  (27) 

where i and j are as in Figure 1, so that the discrete movement of chemical from nodej to node i is 
given by 

-Atyij  1 c r  -cf I. (28) 
If y i j>O,  then chemical leaves node i and enters node j .  However, if y i j<O,  then chemical leaves 
node j and enters node i, which is not physically possible. Thus in the case of y i j < O  there is 
a non-physical flux path between node i and node j. Of course, this non-physical path is balanced 
by other paths, so that the net discrete flux across the surface points in the correct direction. 
However, it is clear that if y i j<O,  some of the discrete flux paths are non-physical. 

A more extreme example of the above phenomenon is given by assuming the initial state 

c r =  1, cr=O, V j ,  j # i .  (29) 
For a sufficiently small time At (from equation (26)) 

If yij>O, Vi, j ,  then the concentration decreases at node i and increases at node j .  However, if 
yiI < 0,l E qi, then the concentration of node 1 becomes less than zero. This violates the maximum 
principal of the original equation (24). 

Alternatively, if an implicit approximation to equation (26) is used, then equation (26) can be 
written as 

AcN+ = VcN, [v]ij= 6 6,. (3 1) 

minur<ufV+'<maxuy (32) 

If y i j>O,  then A is an M-matr i~,*~ which implies that 

j I 

(recall that all boundary conditions are zero flux). Equation (32) is a discrete version of the 
maximum principal of the original equation (24). Equation (32) is true for any time step and in 
particular implies that the discrete concentration can never become less than zero if 

ui>O, Vi,  

at the initial time. This argument is also independent of mesh size. 
If linear basis functions defined on triangles are used, then the condition for yij 2 0 has a simple 

geometric interpretation if K = I. If a and fl are the two angles opposite an interior edge of the 
triangulation, then y i j  are positive if14 

a+P<.n. 

A Delauney triangulation satisfies this condition for internal edges of the triangulation." 
The appearance of small negative concentrations may only be a minor annoyance for the linear 

diffusion equation. However, for multiphase fluid flow, negative transmissibilities can cause 
non-physical discrete fluid flow. This is especially true for gravity-dominated systems. As 
discussed in Section 1, this non-physical flow path can cause the discrete buoyancy forces to act in 
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the opposite direction to the physical buoyancy forces. This has the computational effect of 
causing poor convergence behaviour for the Newton iteration. This will be demonstrated in some 
examples in the following. 

5. CHOICE O F  BASIS FUNCTIONS AND TRIANGULATION METHOD 

As described in Section 1, we wouldlike to produce a discretization such that all transmissibilities 
are positive, i.e. 

y i j  10. (33) 
In order to eliminate some possibilities, consider for the moment the problem of ensuring that 
equation (33) is satisfied for a three-dimensional region divided into rectangular blocks or bricks 
(hexahedral elements), with each face of a hexahedron being perpendicular to other faces. Of 
course, we could use a finite difference method for this type of grid to ensure that equation (33) is 
satisfied. However, it is difficult to generalize a finite difference method to more irregular 
geometries. Irregular meshes in the finite element case can be constructed by distorting the blocks. 

A natural choice for hexahedral elements are Co Lagrangian basis functions (tensor products of 
one-dimensional linear basis functions). Consider the case of a constant, isotropic permeability 
tensor K. If Ax, Ay and Az are the physical dimensions of the block, then in geophysical 
applications Az is typically much smaller than either Ay or Ax. In this case some straightforward 
algebra (equation (17)) shows that horizontal transmissibilities are negative, even if Ax = Ay. 
Consequently, if our criterion is to minimize the possibility of negative transmissibilities, then C o  
Lagrangian hexahedral basis functions are inappropriate. 

The simplest choice of three-dimensional elements uses first-degree C o  linear basis functions 
defined on tetrahedra. These are the natural extension of two-dimensional first-degree Co 
Lagrange triangular basis functions. In two dimensions all interior transmissibilities will be 
positive if the nodes are connected by a two-dimensional Delauney triangulation.' * Unfortun- 
ately, Delauney triangulations in three dimensions do not, in general, produce positive trans- 
missibilities.20 In fact, it is not possible, in general, to eliminate interior negative transmissibilities 
in three dimensions.20 Consequently, we seek only to minimize the size and number of the 
negative transmissibilities. 

Three-dimensional blocks can be divided into tetrahedra in essentially two ways. Either five 
tetrahedra can be used, as shown in Figure 2, or six tetrahedra, as in Figure 3. 

The five tetrahedra in Figure 2 are ABDF, ACDG, ADFG, AEFG and DFGH. The six 
tetrahedra in Figure 3 are ABDH, ABFH, ACDH, ACGH, AEFH and AEGH. 

Assuming that K is constant and isotropic, it is easy to show that the six-tetrahedra configura- 
tion produces zero diagonal transmissibilities and positive block edge transmissibilities. In fact, 
the six-tetrahedra configuration reduces to the common seven-point finite difference molecule. 

Figure 2. Five-tetrahedra decomposition of a rectangular block 
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Figure 3. Six-tetrahedra decomposition of a rectangular block 

For the five-tetrahedra configuration the block edge transmissibilities are positive but the 
(interior) diagonal transmissibilities may be negative. The diagonal transmissibilities have the 
form 

(34) 
1 1 1  
12 

y i j  (diagonal) = - Ax Ay Az 

where Ax, Ay and Az are cyclically permuted depending on which diagonal is being evaluated. 
Note that if Az is small compared to Ax and Ay, then equation (34) is negative. 

A straightforward technique can be used to construct tetrahedral grids. This method is 
particularly suited to geophysical problems. First, a two-dimensional grid of quadrilaterals is 
defined on the physical surface (the top layer). The third dimension of the problem can be 
constructed by specifying the z-co-ordinate of each surface point and by giving the z-co-ordinate 
of each point in the layers below that surface point. A stratified porous medium automatically 
lends itself to this approach. Also, field data are commonly available in this form. For example, 
geological data are often displayed in terms of contour maps showing depths to layers and layer 
thicknesses. 

This technique conveniently defines deformed blocks, which may then be divided into tetra- 
hedra. Note that the deformed blocks no longer have planar surfaces, since the four points on 
a block face will not, in general, form a plane. For example, in Figures 2 and 3 ACD could form 
one plane and ABD would form another plane. 

In the above we have assumed that the projection of the grid on each layer onto the x-y plane is 
the same. However, this technique can be generalized to any set of quadrilateral grids such that 
each grid is isomorphic to the grid above (or below) it. In other words, each grid on a given layer 
can be transformed by a sequence of stretching and pulling operations into the grid above 
(below) it. 

6. LNAPL EXAMPLE 

The first example is an extension of the problem solved by Faust' and others6 The original 
problem is a two-dimensional x-z cross-sectional LNAPL (light non-aqueous phase liquid, with 
density of NAPL less than density of water) scenario. The model was extended to three 
dimensions by using nodes a unit distance apart in the y-direction. 

In essence, the problem has been made three-dimensional by connecting two identical cross- 
sections together. This is trivially three-dimensional, since the results should be the same on each 
two-dimensional cross-section. However, this example provides a convenient verification of the 
three-dimensional discretization technique, since the numerical solution is well known. It also 
provides a useful problem to test the five- and six-tetrahedra block decomposition methods. 
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900 I191 year 
NAPL leakage 

100 cm/year rain 

Unsaturated zone 

900 I191 year 
NAPL leakage I , I I I 

100 cm/year rain 

t t t i t  
tunsaturated zone k t  

4 

Figure 4. Domain for the Faust' problem 

The original problem' was posed on a cell-centred finite difference grid. In other words, the 
finite volumes are blocks, where values are taken at the block centres. The control volume-finite 
element method is applied by defining nodes at the vertices of the cells. This results in a two- 
dimensional cross-section of 7 x 21 nodes, compared to the original 6 x 20 grid. Figure 4 shows 
the problem domain. Complete details of the data used for this problem are given in Reference 1 
and will not be repeated here. 

This problem was solved using both the five- and six-tetrahedra methods for block decomposi- 
tion. The run statistics for both computations are reported in Table 1. The five-tetrahedra run 
failed to reach the end time before the CPU time limit expired. At this point the five tetrahedra 
discretization had consumed more than 10 times the CPU time of the six-tetrahedra method. 

The total CPU time is proportional to both the total number of Newton iterations and the 
number of non-zero transmissibilities. Table I indicates that the five-tetrahedra configuration has 
twice as many non-zero transmissibilities and requires five times as many Newton iterations as 
the six-tetrahedra method. Consequently, we expect that the five-tetrahedra discretization will 
require an order of magnitude more CPU time, as is observed. 

We empbasize that the only difference between these two computations is the method for 
decomposing blocks into tetrahedra. All other data were identical. The five-tetrahedra formula- 
tion had many repeat times teps owing to failure of the Newton iteration. 

A detailed analysis of the Newton iteration for the five-tetrahedra decomposition revealed an 
interesting physical explanation for the convergence failures. As described previously, the five- 
tetrahedra discretization procedure produces positive transmissibilities along a block edge, while 
diagonal transmissibilities are negative. Physically, for this example, the LNAPL sinks down 
through the unsaturated zone until the water table is encountered. Consequently, during a 

Table I. Computational statistics for the tetrahedra discretizations, Faust problem' 

Six tetrahedra Five tetrahedra 

Normalized CPU time 
Newton iterations 
Time reached 
Material balance error 
Number of time steps 
Non-zero transmissibilities 
Negative transmissibilities 

1.0 12.7* 
60 335* 
39055 days 183 days* 
2 x 1 0 - 5  6 x lo-'* 
10 30* 
679 1185 
0 114 

* Failed to reach stopping time before. CPU time limit expired. 
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Table 11. Computational statistics for the tetrahedra discretizations, variable layer depth 
Faust problem 

Normalized CPU time 
Newton iterations 
Time reached 
Material balance error 
Number of time steps 
Repeated time steps 
Non-zero transmissibilities 
Negative transmissibilities 
Maximum size of negative transmissibilities 

Six tetrahedra 

1 .o 
63 
39055 days 
5 x 
11 
0 
1298 
259 
10- l4 m 

~ ~~ ~ 

Five tetrahedra 

3.5 
163 
39055 days 

17 
6 
1185 
126 
lo-" m 

4 x 10-4 

Newton iteration, liquid flows down the edge of a block but then flows back up along the negative 
transmissibility, i.e. in the negative physical flow direction. The next Newton iteration attempts to 
correct this by sending more fluid down the edge of the block. This is repeated until eventually 
a solution is reached. When the negative connection is large, this process may continue indefin- 
itely (if the time step is large). Consequently, the five-tetrahedra formulation results in many 
repeat time steps. 

It could be argued that the case of a hexadron with perpendicular sides is atypical, since the 
six-tetrahedra decomposition has no negative transmissibilities. To verify that the superior 
performance of the six-tetrahedra discretization is not just restricted to unusual cases, the Faust 
LNAPL problem was perturbed slightly. The z-co-ordinate was given an average dip of approx- 
imately 3% in the x-direction. In other words, differences in the depths of nodes in the same layer 
were approximately 3 % of their horizontal separation. Consequently, the blocks are not quite 
rectangular. 

The computational statistics for this variable layer depth Faust problem are given in Table 11. 
Note that now the six-tetrahedra formulation has more negative transmissibilities than the 
five-tetrahedra decomposition, but the maximum absolute size of the negative transmissibility is 
100 times smaller. The results indicate that, once again, the six-tetrahedra formulation is more 
computationally efficient than the five-tetrahedra decomposition. Table I1 suggests that the 
absolute size of the negative transmissibilities may be more important than the number of 
negative transmissibilities. 

7. FULL THREE-DIMENSIONAL DNAPL EXAMPLE 

This example is a full three-dimensional simulation of dense NAPL (DNAPL) contamination 
using typical geophysical and fluid data. 

A 25 x 13 x 10 grid of deformed blocks was used. In the light of the results of the previous 
section, these blocks were decomposed into six tetrahedra. A rectangular 25 x 13 grid was used in 
the horizontal (x-y) plane. The physical size of the x-y plane was 240 x 120 m2, with a node 
spacing in the x-  and y-directions of 10 m. The depth of the lowermost layer (layer 10) varied from 
about 50 to 60 m. 

No-flow boundaries were used on all domain edges, except the x = 0 plane, the x = 240 m plane 
and the surface. At x=O the water table was assumed to lie at a depth of 2 m (constant in the 
y-direction). At x = 240 m the water table was at a depth of 6 m. The water pressure at the water 
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table was taken to be 100 kPa and a hydrostatic boundary condition was used below the water 
table. A constant air pressure boundary is used at the surface6 

DNAPL was considered to be leaking at the surface from a distributed source spread over 
an area of 10 x 20 m2 (nodes (4,6) and (4,7)). The total leakage rate was assumed to be 
100 m3year-'. 

Other data for this problem are given in Tables I11 and IV. Note that the absolute permeabil- 
ities vary by eight orders of magnitude. This is not uncommon for geophysical problems and 
provides a severe test for the iterative Jacobian solver. 

This problem was run to a simulated time of 5 years. The run statistics are given in Table V. On 
average, about seven Newton iterations were required per time step, indicating the severe 
non-linearity of this problem. Approximately five iterations of the incomplete factorization 
iterative solver were required for each Jacobian solved. This indicates that the iterative solver 
performed quite well in spite of the large permeability contrasts. A reduced system incomplete 
LU factorization with O r t h ~ r n i n ~ ~  acceleration was used. 

The material balance error was about lo-' at the end of the simulation, which is certainly 
adequate for practical purposes. Note that the average degree of implicitness is only 11 %. Recall 
that the NAPL pressure is always solved implicitly, but for this example, on average, only 11 % of 

Table 111. Physical data for the three-dimensional DNAPL example 

Layer Absolute permeabilities 
( K ,  = K ,  = K , )  

P W  100 kg m-3 1,2 
Pn 1200 kgm-3 3 
PW 1.0 CP 4 
Pn 1.0 C P  5 
4 0.3 6 

7,8 
9 

10 

m2 
m2 

lo-" m2 
m2 
m2 
m2 

1 0 - l ~  m2 
lo-'" m2 

Table IV. Relative permeability and capillary pressure tables used in the three-dimensional 
DNAPL example 

0.2 0.0 0.68 
0 3  0.04 0.55 
0 4  0.10 043 
0 5  0.18 0.31 
0.6 0.30 0.20 
0.1 0.44 0.12 
0.8 0.60 0.05 
0 9  0.80 0 0  
1.0 1.0 00 

9.0 
5.4 
3.9 
3.3 
3.0 
2.1 
2.4 
1.5 
0-0 

0.2 0.64 
0.32 0.46 
0-40 0.36 
0.50 0.25 
0.60 016 
070 009 
0.80 0.04 
0.90 0.01 
1.0 00 

s,* 

0.0 9.0 
0.0 3.0 
0.0009 0.24 
0.045 2.1 
0.116 1.8 
0.210 1.5 
0.34 1.2 
0.49 090 
068 0.0 

= 0.1 (see equation (6)) 

6.6 
4.5 
3.9 
3 6  
3.3 
3.0 
2.0 
1 .o 
0.0 
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Table V. Run statistics for the three-dimensional DNAPL problem 

Number of nodes 
Number of tetrahedra 
Non-zero transmissibilities 
Negative transmissibilities 
Number of time steps 
Total Newton iterations 
Total inner iterations 
Average degree of implicitness 
Material balance error 
Time reached 
CPU time (MIPS/120 M) 

3250 
15552 
19984 
5424 
31 
208 
1044 
0.11 
9 x 10-6 
5 years 
3200 s 

the nodes have the NAPL saturation S,  implicit as well. This is typical of contamination 
problems, since S,  ~0 everywhere initially and mobile NAPL usually occurs only in a fraction of 
the total number of nodes. 

Figures 5-7 show the simulation results at 5 years. The left side of the diagrams shows the 
values of the DNAPL saturation for each layer, while the right-hand side depicts the location of 
the nodes for that layer (i.e. the layer surface). The location of the DNAPL source can be clearly 

layer 1 

i 60 i i o  180 2 i o  

layer 2 
x (m) 

60 120 Id0 2; 0 

layer 3 
x (m) 

0 60 120 160 2 i  0 

x (4 

SATURATION SCALE: 1>.5 1.4-.5 111.3-.4 g.2-.3 s.1-.2 

Figure 5. DNAPL saturation and layer surfaces for layers 1-3, full three-dimensional example 
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layer 4 

- i  60 l i0  100 240 

layer 5 
x (4 

SATURATION SCALE: H>.5 1.4- .5  M.3-.4 %.2-.3 3.1-2 

Figure 6. DNAPL saturation and layer surfaces for layers 4-6, full three.-dimensional example 

seen in layer 1 at the location of the large saturation values. There is a complicated interaction 
between the shape of the layer surface and the permeability contrast between a given layer and the 
one beneath it. For example, the permeability of layer 5 is two orders of magnitude larger than the 
permeability of layer 6 (see Table 111). In this case we see that the DNAPL pools to a certain 
extent in layer 5. A finger of DNAPL then forms and moves towards the lowest point in layer 5. 
Since layer 10 is virtually impermeable, the DNAPL also pools in layer 9. Layer 10 is not shown 
since the DNAPL saturation is identically zero in this layer. 

Unlike LNAPL contamination (p,, <pw), where the water table is a barrier to contaminant 
migration, DNAPL will continue to flow downwards under the action of gravity. Even if an 
impermeable layer is encountered, DNAPL will continue to move along the layer to the lowest 
point. Consequently, DNAPL contaminant can be expected to move far from the original site of 
the spill. This makes remediation and clean-up of DNAPL sites extremely difficult. 

An attempt was made to run this same problem with the five-tetrahedra decomposition of the 
blocks. This results in an order-of-magnitude increase in the size of the negative transmissibilities. 
The Newton iteration failed repeatedly, and excessively small time steps were required. As 
a result, we did not attempt to complete the simulation with this type of triangulation. 
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layer 7 
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Figure 7. DNAPL saturation and layer surfaces for layers 7-9, full three-dimensional example 

8. CONCLUSIONS 

For both physical and computational reasons it is desirable to develop discretization methods 
having positive transmissibilities. Positive transmissibilities imply that the discrete fluid is in the 
same direction as the physical fluid flow. 

A common technique for discretization of three-dimensional unsaturated grids is to use 
brick-type elements with 27-node connectivity. However, for grids typical of geophysical prob- 
lems, brick-type elements give rise to a large number of negative transmissibilities. 

Tetrahedra are the natural extension to three dimensions of triangles, which have been 
successfully used in two-dimensional problems. * Regions which are typical of NAPL con- 
taminant simulation can be conveniently triangulated by first defining deformed blocks and then 
dividing the blocks into tetrahedra, There are essentially two ways to decompose blocks into 
tetrahedra, using either five or six tetrahedra. 

It was demonstrated that the six-tetrahedra decomposition process produces negative trans- 
missibilities which are smaller in (absolute) size than those of the five-tetrahedra decomposition 
for grids typical of geophysical problems. Numerical tests comparing the five- and six-tetrahedra 
methods showed that negative transmissibilities can have a pronounced effect on the Newton 
iteration. In particular, large negative transmissibilities result in non-physical flow paths, which 
can cause oscillations in the Newton iteration. 



970 F. W. LETNIOWSKI AND P. A. FORSYTH 

In general, unlike in two dimensions, it is not possible to eliminate negative transmissibilities 
without node movement. Node movement is undesirable, since the placement of nodes corres- 
ponds to the physically relevant geological layers. However, the six-tetrahedra block decomposi- 
tion does give small negative transmissibilities for typical grid geometries. 

Note that, on average, the use of tetrahedra results in 15-node connectivity. This is an 
advantage over larger node connectivity, since the amount of fill for a given level of incomplete 
factorization is proportional to the number of non-zeros (not the bandwidth) in the original 
matrix. Consequently, small node connectivity reduces the work required for the iterative 
solution of the Jacobian. If the discretization produces all positive transmissibilities, then in the 
single-phase incompressible limit the Jacobian becomes an M-matrix, which has excellent 
properties for iterative solvers. 

Simulation of a realistic NAPL contamination scenario required only a small number of fully 
implicit nodes on average. Consequently, the adaptive implicit method, coupled with an iterative 
matrix solver, permits the solution of fairly large three-dimensional problems with modest 
requirements in terms of computational work and storage. 
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